| 157 | 0 | 37 |
| 下载次数 | 被引频次 | 阅读次数 |
磷酸钒钠(Na3V2(PO4)3)具有较高的工作电压、快速的Na+扩散和良好的结构稳定性,是高性能钠离子电池的优选正极材料。然而,较低的本征电子导电性严重阻碍了它的实际应用。本研究设计并制备了Bi3+掺杂的Na3V2-xBix(PO4)3正极材料。Bi3+掺杂策略可以显著减小其带隙和Na+扩散能垒,因此显著改善了其电荷转移动力学和电化学性能。改性后的Na3V1.95Bi0.05(PO4)3@C正极材料在1C倍率下可逆比容量为117.77 mAh·g-1,20C下具有85.21 mAh·g-1的倍率容量;在5C下经过1300次充放电循环后,每循环的容量衰减率仅为0.006 9%。此外,通过原位X射线衍射阐释了Na3V1.95Bi0.05(PO4)3与NaV1.95Bi0.05(PO4)3之间存在高度可逆的双相转变。本研究为Na3V2(PO4)3正极在高性能钠离子电池中的实际应用提供了数据支持。
Abstract:Na3V2(PO4)3 has attracted significant attention as a viable cathode for high-performance sodium ion batteries owing to its satisfactory operating voltage, fast Na+ diffusion and thrilling structural stability.Nevertheless, its low intrinsic electronic conductivity severely impedes its practical applications.In this work, a Bi3+ doped Na3V2(PO4)3 is deliberately designed and prepared.The Bi3+-doped strategy not only significantly reduces its band gap, but also decreases Na+ diffusion energy barrier.Consequently, the dramatically boosted charge transfer kinetics and electrochemical performances are achieved.The modified Na3V1.95Bi0.05(PO4)3@C possesses a noteworthy rate capacity of 85.21 mAh·g-1 at 20C and an exceedingly low capacity attenuation of 0.006 9% per cycle at 5C after 1300 charging/discharging cycles.Moreover, a highly reversible bi-phase transition between Na3V1.95Bi0.05(PO4)3 and NaV1.95Bi0.05(PO4)3 is also interpreted based on the in-situ XRD.This research is beneficial to promote its large-scale applications of Na3V2(PO4)3 cathode for high-performance sodium ion batteries.
[1] CAI X S,YUE Y Y,YI Z,et al.Challenges and industrial perspectives on the development of sodium ion batteries[J].Nano Energy,2024,129:110052.
[2] JIANG M Q,LI T Y,QIU L Y,et al.Electrolyte design with dual CN groups containing additives to enable high-voltage Na3V2(PO4)2F3-based sodium-ion batteries[J].Journal of the American Chemical Society,2024,146:12519-12529.
[3] ZHANG J Y,MA S Y,ZHANG J H,et al.Critical review on cathode electrolyte interphase towards stabilization for sodium-ion batteries[J].Nano Energy,2024,128:109814.
[4] LIN S S,YANG Z,CHEN J,et al.Functional electrolyte additives for sodium-ion and sodium-metal batteries:progress and perspectives[J].Advanced Functional Materials,2024,34:2400731.
[5] SINGH AN,ISLAM M,MEENA A,et al.Unleashing the potential of sodium-ion batteries:current state and future directions for sustainable energy storage[J].Advanced Functional Materials,2023,33:2304617.
[6] BAI Z C,YAO Q,WANG M Y,et al.Low-temperature sodium-ion batteries:challenges and progress[J].Advanced Energy Materials,2024,14:2303788.
[7] CHEN J W,ADIT G,LI L,et al.Optimization strategies toward functional sodium-ion batteries[J].Energy & Environmental Materials,2023,6:12633.
[8] Lü Z Q,LI T Y,HOU X,et al.Solvation structure and solid electrolyte interface engineering for excellent Na+ storage performances of hard carbon with the ether-based electrolytes[J].Chemical Engineering Journal,2022,430:133143.
[9] LIANG X H,HWANG J Y,SUN Y K.Practical cathodes for sodium-ion batteries:who will take the crown?[J].Advanced Energy Materials,2023,13:2301975.
[10] YIN X X,WU D H,LU Z J,et al.Innovative synthesis and comprehensive electrochemical evaluation of FeVO4 for enhanced sodium-ion battery performance[J].Applied Energy,2024,373:12387.
[11] LING M X,LV Z Q,LI F,et al.Revisiting of tetragonal NaVPO4F:a high energy density cathode for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2020,12:30510-30519.
[12] ZHANG H,GAO Y,LIU X H,et al.Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems[J].Advanced Energy Materials,2023,13:2300149.
[13] XIAO X,LAN Y Q,TAN L,et al.Alluaudite Na2Fe2(SO4)3 and NASICON-type Na4Fe3(PO4)2(P2O7) as promising cathode materials in sodium-ion batteries[J].Advanced Functional Materials,2024,33:2411280.
[14] LU X Y,LI S Q,LI Y,et al.From lab to application:challenges and opportunities in achieving fast charging with polyanionic cathodes for sodium-ion batteries[J].Advanced Materials,2024,36:2407359.
[15] YUAN Y,WEI Q Y,YANG S K,et al.Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries[J].Energy Storage Materials,2022,50:760-782.
[16] YAN W X,WANG X J,HAN Y,et al.Green large-scale preparation of Na3V2(PO4)3 with good rate capability and long cycling lifespan for sodium-ion batteries[J].ACS Sustainable Chemistry & Engineering,2024,12:2394-2403.
[17] WANG Z H,CHEN L,YANG K,et al.Exploration of a novel vanadium source for the synthesis of a Na3V2(PO4)3 cathode of sodium-ion batteries[J].ACS Sustainable Chemistry & Engineering,2024,12:1973-1983.
[18] CHEN Y X,LIAO X Y,XIE M,et al.An advanced high-entropy cathode achieves a multi-electron reaction via the activation of multicationic redox in polyanionic phosphates for sodium-ion batteries[J].ACS Sustainable Chemistry & Engineering,2024,12:13568-13577.
[19] ZHOU Y J,YANG X C,HOU M J,et al.Manipulating amorphous and crystalline hybridization of Na3V2(PO4)3/C for enhancing sodium-ion diffusion kinetics[J].Journal of Colloid and Interface Science,2024,667:64-72.
[20] Lü Z Q,LING M X,YUE M,et al.Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries:toward high-energy and high-power applications[J].Journal of Energy Chemistry,2021,55:361-390.
[21] YI H M,LIN L,LING M X,et al.Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method[J].ACS Energy Letters,2019,4:1565-1571.
[22] YI H M,LI D,LV Z Q,et al.Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method[J].Journal of Materials Chemistry A,2019,7:22550.
[23] Lü Z Q,YUE M,LING M X,et al.Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading[J].Advanced Energy Materials,2021,11:2003725.
[24] Lü Z Q,LING M X,YI H M,et al.Electrode design for high-performance sodium-ion batteries:coupling nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network[J].ACS Applied Materials & Interfaces,2020,12:13869-13877.
[25] ZHOU Q B,WANG L L,LI W Y,et al.Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries[J].ACS Applied Materials & Interfaces,2021,13:25036-25043.
[26] LI J H,CHEN Y J,BAI Q,et al.Synergistic modification of dandelion-shaped Na3V2(PO4)3 with triple superimposed conductive networks by dual-carbon sources for high performance sodium-ion batteries[J].ACS Sustainable Chemistry & Engineering,2023,11:12631-12645.
[27] GAO M,CHEN H Y,NIU X B.Investigating the structure,electronic properties,and ion migration of Na3V2(PO4)3 cathodes via mono/multi-element doping of Cr,Fe,and Si[J].Solid State Ionics,2024,406:116456.
[28] LIU M Y,ZHU K,WAN K X,et al.Design of Ti4+/Zr4+ as dual-supporting sites in Na3V2(PO4)3 for the advanced aqueous zinc-ion battery cathode[J].ACS Applied Materials & Interfaces,2023,15:28073-28083.
[29] PUSPITASARI D A,PATRA J,HUNG I M,et al.Optimizing the Mg doping concentration of Na3V2-xMgx(PO4)2F3/C for enhanced sodiation/desodiation properties[J].ACS Sustainable Chemistry & Engineering,2021,9:6962-6971.
[30] ZHAO S T,QI W T,YANG C,et al.Triggering reversible V4+/V5+ redox couples in Na3V2(PO4)3 porous flower-like cathodes by Mg2+ substitution for high-performance Na-ion batteries[J].Journal of Power Sources,2024,595:234076.
[31] YI H M,LING M,XU W B,et al.VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes:analysis of electrochemical performance and kinetic properties[J].Nano Energy,2018,47:340-352.
[32] KANG Y H,LIN X T,Tong S,et al.Synergetic impact of high-entropy microdoping modification in Na3V2(PO4)3[J].Chemical Communications,2024,60:2512-2515.
[33] MAHATO S,DAS S,GUPTA D,et al.Vanadium substituted Fe,Cr co-doped high performance C/Na3V2(PO4)2F3 cathode for sodium-ion batteries[J].Journal of Electroanalytical Chemistry,2024,955:118046.
[34] TIAN Z Y,CHEN Y J,SUN S Q,et al.Constructing hierarchical heterojunction structure for K/Co co-substituted Na3V2(PO4)3 by integrating carbon quantum dots[J].Journal of Colloid and Interface Science,2022,613:536-546.
[35] SHI H G,GUO L,CHEN Y J.Unraveling the modified mechanism of ruthenium substitution on Na3V2(PO4)3 with superior rate capability and ultralong cyclic performance[J].Journal of Colloid and Interface Science,2024,664:487-499.
[36] BI L N,LI X Y,LIU X Q,et al.Enhanced cycling stability and rate capability in a La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries[J].ACS Sustainable Chemistry & Engineering,2019,7:7693-7699.
[37] Lü Z Q,ZHANG Y L,LIU Z Q,et al.Carbon coated Na3+xV2-xCux(PO4)3@C cathode for high-performance sodium ion batteries[J].Journal of Colloid and Interface Science,2024,666:540-546.
[38] FAN Y Q,PENG Z B,HE J W,et al.Simultaneous modification of Na+-rich and Mn2+-doping on Na3V2(PO4)3 for superior electrochemical performance:experimental and theoretical study[J].Journal of Alloys and Compounds,2025,1010:177407.
[39] DIVYA J,SHIVARAMU N J,PURCELL W,et al.Multifunction applications of Bi2O3:Eu3+ nanophosphor for red light emission and photocatalytic activity[J].Applied Surface Science,2019,497:143748.
[40] SHI H G,WANG Y Z,TIAN Z,et al.Lamellar intercalated spherical Na3V2(PO4)3 with enlarged surface area induced by phenol-formaldehyde boosting high capacity and long lifespan for sodium ion batteries[J].Applied Surface Science,2025,686:162120.
基本信息:
DOI:10.20062/j.cnki.CN37-1453/N.2025.03.008
中图分类号:TQ131.12;TM912
引用信息:
[1]李纪阳,张延磊,张翔,等.Bi~(3+)掺杂磷酸钒钠的晶体结构调控与储钠性能研究[J].鲁东大学学报(自然科学版),2025,41(03):269-277.DOI:10.20062/j.cnki.CN37-1453/N.2025.03.008.
基金信息:
国家自然科学基金(22309072,52173075,21806070); 山东省自然科学基金(ZR2023QB176)